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The aim of this paper is to study the model of Markov process with the 
state space ℤ. The applied method is similar to Depauw et al. (2009) and 
Lam (2014) to prove that this stochastic process converges in probability 
to a constant (Theorem 1.1) and to give its rate also (Theorem 3.1). Pre-
cisely, let L be the corresponding operator of the previous stochastic 
process and f be a given function, we solve the equation Lg f and 

then treat the limit of its solutions, the rate of the convergence is instantly 
given by the convergence of the moment of Markov process. 
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1 INTRODUCTION 

Let ( ) 0Xt t be a Markov process on the state space 

ℤ and suppose that operators 0{ }t tP   acts on a 

bounded function :f    

( ) { ( )| }.0P f k E f X X kt t   (1.1) 

According to Markov chain’s property: 

( ) { ( )| },P f k E f X X kt t s s   

for all 0s  . 

Let operator L is a derivative of 0{ }t tP  at 0t , 

i.e., lim
0

P f ftLf
tt





 

if the limit exists. The domain 𝒟 ( )L of this operator 

is defined as the set of functions such that the limit 
exists.  

For f 𝒟 ( )L , we also have pointwise continuity 

( ) ( )
( ) lim ,

0






P f k f ktLf k
t

t
.k   

The operator L is called the infinitesimal generator 

of Markov process 0( )t tX  . 

Considering Markov process ( ) 0Xt t with 00X  , 

the conductance of the edge between 𝑘; 𝑘 1  is

  and the conductance of the edge between 𝑘; 𝑘
1  is  . When 0,t   

ℙ{ 1| } ( ),X k X k t o tt s s       

ℙ{ 1| } ( ),X k X k t o tt s s       

ℙ{ | } 1 ( ) ( ).X k X k t o tt s s         

Also, 
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( ) { ( )| } ( 1) ( ) ( 1) ( 1)P f k E f X X k tf k o t f k tf kt t s s         
( ) ( 1) ( ) ( ) ( ) ( ) ( ),o t f k f k tf k o t f k        

where
( )

lim 0.
o t

tt t



 

 Based on the definition of infinitesimal 
generator L , we have 

( ) ( )
( ) lim ( 1) ( 1) ( ) ( ).

0

P f k f ktLf k f k f k f k
tt

   
      


     

 (1.2) 

In the case ,   the process ( ) 0Xt t  is defined 

as above called unbalanced one-
dimensionalMarkov process. 

Stochastic process model has various applications in 
real-life situations. That is the increase or decrease 
ofan individual after a short period of time, which is 
also called thebirth-death process. In term of a 
dynamical system, it is the random transfer process 
of a particle inside a homogeneous conductor. In 
queueing theory, the number of customers, who just 
came or left after a short period of time,can be 
modeled as aMarkov process.  

In [2], Lam (2014) introduced a model of Markov 
process with the conductance of the edge between 

𝑘; 𝑘 1  is ,k  where ( )k k   be a stationary 

process. He also proved the central limit theorem
2(0; ) .

X Dt N as t
t

   

In the above expression, D  denoting 
convergence in distribution of random variables. 

In this paper, we consider the previous model of 

unbalanced stochastic process 0( )t tX  with the 

infinitesimal generator L as in (1.2)and initial state 

0 0X  . Now we study the law of the process for 

large enough 𝑡. In this case, every state of the 
process is transient(Ross, 2010), and based on this 
result, we prove the existence of law of large 

number for the sequence 0( .)t tX  We have the 

following theorem. 

Theorem 1.1 For all unbalanced stochastic process 

0( )t tX  as above, we get 

X Pt
t
    

As .t  In the above expression, P
denoting convergence in probability of random 
variables and G    is the result of limit. 

It is also called the weak law of large numbers for 
the sequence ( 0.)Xt t Moreover, another aim of the 

paper is to give the rate of convergence. 

This paper is organized as follows. In Section 2, we 
introduce the method used in this paper. The main 
result concerning therate of convergence for 
Theorem 1.1 and the detailed proof are shown in 
Section 3.  

2 RESEARCH METHOD 

We first prove the following lemma. 

Lemma 2.1 Let ( ) 0Zt t be random variables defined 

on the same probability space and𝑎 ∈ ℝ  be an 
arbitrary constant. If  lim

→
𝐸 𝑍ℓ 𝑎ℓfor all ℓ

1,2, then tZ converges in probability to a as .t  

Proof. 

Applying the Chebyshev’s inequality, we have:  

𝑃 |𝑍 𝑎| 𝜀 𝑃 𝑍 𝑎 𝜀  

                     
𝐸 𝑍 𝑎

𝜀
 

      
𝐸 𝑍 2𝑡𝐸 𝑍 𝐸 𝑎

𝜀
 

→ 0 

as 𝑡 →  ∞.This completes the proof.     □ 

In the next step, let   be the set of random variables 
with finite second-order moment. We define a 
map 𝑑: ℵ ℝ → 0; ∞   such that 

𝑑 𝑋, 𝑌 |𝐸 𝑋 𝑌 | |𝐸 𝑋 𝑌 |(2.1) 

We have the following property. 

Lemma 2.2 Let 0( )t tZ  be a sequence of elements 

in ℵ and 𝑎 ∈  ℝ be a constant.  If lim
→

𝑑 𝑍 , 𝑎 0, 

then tZ converges in probability toa as .t   

Proof. Equation (2.1) implies 𝑑 𝑍 , 𝑎 |𝐸 𝑍
𝑎 | |𝐸 𝑍 𝑎 |. By applying the assumption of 
this lemma, i.e., lim

→
𝑑 𝑍 , 𝑎 0, we conclude 

that lim
→

𝐸 𝑍 𝑎  for all 𝑙 1, 2. Therefore, 

Lemma 2. 1implies the result in Lemma 2.2..                     

□ 

In the following section, we use the map d and 
Lemma 2.2 to find the rate of convergence in 
Theorem 1.1 with 𝑍 𝑋 𝑡 and𝑎 𝐺. 
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3 MAIN RESULTS 

We now consider the unbalanced stochastic process 
introduced in Section 1. In this section, we take into 
account the case 𝜆 𝛾 while the proof for the case 
𝜆 𝛾 can be treated by the same argument. The 
main result regardingtherate of convergencefor the 
law of large number can be presented as follow. 

Theorem 3.1 We have 

𝑑
𝑋
𝑡

, 𝐺 𝑂 𝑡 . 

Here, by definition, the function 𝑓 𝑡 𝑂 𝑔 𝑡  if  
limsup

→
|𝑓 𝑡 𝑔 𝑡  | ∞. 

Under the view of law of large numbers, the 
simplest case is the independent and identically 
distributed variables (i.i.d).There are two different 
types: Weak and strong law of large numbers. In our 
model, the concerning stochastic process is a 
Markov process which is more general than the case 
i.i.d. Moreover, we also illustrate the law of large 
numbers for dependent variablesand evaluate the 
rate of convergence. 

We have the following necessary lemmas:   

Lemma 3.1 Let 𝜑: ℤ → ℝ be a given function, there 
exists a unique function Φ: ℤ → ℝ such that 

LΦ ≡ 𝜑
Φ 0 0.

(3.1) 

Proof. 

It is easy to find Φ 0 . 

For all 𝑚, we consider the equation 𝐿Φ 𝑚
𝜑 𝑚 .   

L is an operator defined as above, we have 

λΦ 𝑚 1 𝛾Φ 𝑚 1 𝜆 𝛾 Φ 𝑚
𝜑 𝑚 . 

In other words, 

Φ 𝑚 1 Φ 𝑚
𝛾
𝜆

Φ 𝑚 Φ 𝑚 1

1
𝜆

𝜑 𝑚 . 

Let 𝜌  , we obtain  

Φ 𝑚 1 Φ 𝑚
𝜌 Φ 𝑚 Φ 𝑚 1
1
𝜆

𝜑 𝑚 . 

By recursion on m, it yields 

Φ 𝑚 1 Φ 𝑚
1
𝜆

𝜌 𝜑 𝑚 𝑘 . 

Then we divide the equations in to two cases 
according to 𝑚, and iterate one more time.  

In case 𝑚 1, we find  

Φ 𝑚
1
𝜆

𝜌 𝜑 𝑙 𝑘 . 

Similarly, when 𝑚 1, we also find 

Φ 𝑚
1
𝜆 

𝜌 𝜑 1 𝑙 𝑘 . 

The function Φ is therefore theunique solution of 
(3.1).    

We return to Theorem 3.1 and analyze 

𝑑
𝑋
𝑡

, 𝐺 𝐸
𝑋
𝑡

𝐺 𝐸
𝑋
𝑡

𝐺 .  

As 𝐺 𝜆 1 𝜌  for all 𝜌, it remains to prove two 

claims 𝐸 𝐺 O 𝑡  and 𝐸 𝐺

O 𝑡  to obtain the desired result. These properties 
are stated in Proposition 3.1 and Proposition 3.2.   

Proposition 3.1 Let a sequence of random variables

0( )n nX   be defined as above, we have 𝐸

𝐺 O 𝑡  . 

Proof. We consider the function sequence 0fk  

with the domain ℤ such that 

𝐿𝑓 ≡ 𝑓 ,                𝑘 1
𝑓 ≡ 1,                                       
𝑓 0 0,                    𝑘 1.

 

Applying Lemma 3.1 by substituting𝜑 ≡  𝑓 , Φ ≡
𝑓  yields 

 If 𝑚 1 

𝑓 𝑚
1
𝜆

𝜌 𝑓 𝑙 𝑘

1
𝜆

𝜌
1
𝜆

1
1 𝜌

𝑚
𝛾 1 𝜌

. 

If 𝑚 1 
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𝑓 𝑚
1
𝜆

𝜌 𝑓 1 𝑙 𝑘

1
𝜆

𝜌
𝑚

𝜆 1 𝜌
. 

Thus, 

𝑓 𝑚
𝑚

𝜆 1 𝜌
 

for all 𝑚. 

Again, we use Lemma 3.1 with 𝜑 ≡ 𝑓 , Φ ≡ 𝑓  to 
obtain 

If 𝑚 1 then 

    𝑓 𝑚
1
𝜆

𝜌 𝑓 𝑙 𝑘  

                
1

𝜆 1 𝜌
𝜌 𝑙 𝑘  

                 
1

𝜆 1 𝜌
𝑚 1 𝑚

2
𝑚𝜌

1 𝜌
. 

If 𝑚 1 then 

𝑓 𝑚     
1
𝜆

𝜌 𝑓 1 𝑙 𝑘  

1
𝜆

𝜌
1 𝑙 𝑘

1 𝜌
 

1
𝜆 1 𝜌

𝜌 1 𝑙

𝑘 𝜌 𝜌  

 
1

𝜆 1 𝜌
𝑚 1 𝑚

2
𝑚𝜌

1 𝜌
. 

We conclude that 

         𝑓 𝑚
1

𝜆 1 𝜌
𝑚 1 𝑚

2
𝑚𝜌

1 𝜌
 

for all 𝑚.       

Thenfor all 𝑚 and 𝑘 1, one has 𝐿𝑓 𝑚
𝑓 𝑚 . 

Substituting 𝑚 by 𝑋  and evaluating expectation of 
two sides, 𝐿𝑓 𝑋 𝑓 𝑋  for all 𝑡 0. For 
every 𝑘  1,2, we claim that 

𝐸 𝑓 𝑋  ,                      (3.2) 

Where 𝑓 0 0according to the definition of 𝑓  
and 𝑋 0 according to the assumption of the 
stochastic process 𝑋 . Expression (3.2) is proved by 
the following way. 

When 𝑘 1: 

Let ℎ 𝑡  𝐸 𝑓 𝑋 , we have 

𝐸 𝐿𝑓 𝑋       lim
→

𝐸
𝐸 𝑓 𝑋 |𝑋 𝑓 𝑋

𝑠
 

   lim
→

𝐸
𝑓 𝑋 𝑓 𝑋

𝑠
 

                lim
→

ℎ 𝑡 𝑠 ℎ 𝑡
𝑠

𝑑ℎ 𝑡
𝑑𝑡

. 

Because 𝐸 𝐿𝑓 𝑋 1, we find ℎ 𝑡 𝛽 
with 𝑡 0. Additionally, ℎ 0 𝐸 𝑓 𝑋 0 

so that 𝛽 0. In other words, ℎ 𝑡 𝐸 𝑓 𝑋
𝑡. 

When 𝑘 2: 

Let ℎ 𝑡  𝐸 𝑓 𝑋 , we have 𝐸 𝐿𝑓 𝑋
𝐸 𝑓 𝑋 𝑡 

so that ℎ 𝑡 𝛽 for all 𝑡 0 . 
Moreover, ℎ 0 𝐸 𝑓 𝑋 0 so we 

obtain 𝛽 0 and ℎ 𝑡 . 

As a result, 𝐸 𝑓 𝑋    and 𝑘 1,2 when 𝑡 is 

large enough. Expression (3.2) can be rewritten as 

the following form 𝐸  ~  

when 𝑡 is large enough and for every 𝑘 1,2. 

Due to the existence of  lim
→

𝑓 𝑚 /𝑚 , the limit 

of 𝐸  also exists. In what follows we evaluate 

lim
→

𝑓 𝑚 /𝑚  for k=1,2. 

Lemma 3.2 For every 𝑘 1,2 , let kf be the 

function defined as in Proposition 3.1. Then we have 

lim
→

.                   (3.3) 

Proof. We have 

           If 𝑘 1 then 

lim
→

𝑓 𝑚
𝑚

lim
→

𝑚
𝑚𝜆 1 𝜌

1
𝜆 1 𝜌

. 

If 𝑘 2: then 
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lim
→

𝑓 𝑚
𝑚

lim
→

1
𝑚 𝜆 1 𝜌

𝑚 1 𝑚
2

𝑚𝜌
1 𝜌

1
2

1
𝜆 1 𝜌

. 

This proves the lemma.  □  

By Lemma 3.2, for every arbitrary constant 𝜖 0, 
there exists 𝑀 0 such that, for all 𝑚 𝑀, we 
have 

𝑚
𝑓 𝑚

2𝐺 𝜖. 

We recall that 𝐺 𝜆 1 𝜌 𝜆 𝛾. One has the 
following cases: 

If |𝑋 | 𝑀then 

𝐸
𝑋
𝑡

𝐺 𝐸
𝑋
𝑡

2𝐺 .
𝑓 𝑋

𝑡

𝐸
𝑋

𝑓 𝑋
2𝐺 .

𝑓 𝑋
𝑡

𝜖
2

 

When 𝑡 is large enough. 

If |𝑋 | 𝑀 then 

𝐸
𝑋
𝑡

𝐺 𝐸
𝑋
𝑡

2𝐺 .
𝑓 𝑋

𝑡

𝐸
𝑀
𝑡

2𝐺 .
|𝑓 𝑋 |

𝑡
𝐷
𝑡

 

as 𝑡 is large enough. These estimations complete the 
proof.                       □ 

Proposition 3.2 Let 𝑋  be a stochastic process 

defined as above, we have 𝐸 𝐺 O 𝑡 . 

Proof. For every arbitrary constant 𝜖 0, there 
exists 𝑁 0 such that, for all 𝑚 𝑁, one has 

𝜖. 

If |𝑋 | 𝑁 then 

𝐸
𝑋
𝑡

𝐺 𝐸
𝑋
𝑡

𝐺.
𝑓 𝑋

𝑡
 

𝐸
𝑋
𝑡

. 𝐺 .
1
𝐺

𝑓 𝑋
𝑋

𝜖 

When 𝑡 is large enough.    

If |𝑋 | 𝑁 then 

𝐸
𝑋
𝑡

𝐺 𝐸
𝑋
𝑡

𝐺.
𝑓 𝑋

𝑡

𝐸
𝑁
𝑡

𝐺.
|𝑓 𝑋 |

𝑡
𝐷
𝑡

 

when t is large enough. We obtain the result. □ 

4 CONCLUSIONS   

The rate of convergence regarding the law of large 
numbers for the unbalanced stochastic process 
model in one dimensional space was evaluated. The 
method used in this paper can be applied in future 
research with other meaningful results. 
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